Cyswllt Caerdydd, Pam Prifysgolion?

Mae Prifysgolion yn newid ein gorwelion

Mae Dr Chris Gogledd a Sebastian Dr Khan (PhD 2016) gweithio gyda grŵp Arsyllfa Gravitational Don Interferometer Laser (LIGO), a enillodd y wobr Nobel yn 2017 ar gyfer ffiseg.

A computer generated image of neutron stars colliding

CREDIT: NSF_LIGO_Sonoma State University_A. Simonnet

Yn 1916, rhagwelodd Einstein fodolaeth tonnau disgyrchol fel rhan o’i ddamcaniaeth perthnasedd cyffredinol.

Credodd y byddai digwyddiadau cosmig ar raddfa fawr yn achosi crychdonnau gofod-amser ar draws y bydysawd. Roedd Einstein yn amau, oherwydd bod y tonnau yma mor fitw, na fyddent erioed yn cael eu canfod.

Am bron i ganrif, eu bodolaeth oedd y darn olaf i brofi theori perthnasedd cyffredinol.

Roedd hynny yn wir tan 2015, pan gafodd tonnau disgyrchol eu cofrestru gennym yn Arsyllfa Tonnau Disgyrchol yr Ymyriadur Laser (LlGO) gan bâr o dyllau duon yn uno.

Mae Ymyriadureg Laser yn golygu hollti pelydr laser ac arsylwi’r gwahaniaethau bach iawn rhwng y ddau hanner. Pan wrthdarodd y tyllau duon cafodd mwy o egni ei ryddhau na phŵer cyfunol holl olau sêr y bydysawd , ac eto, dim ond 1/1000ain diamedr proton symudodd drychau gosodiadau LIGO sy’n 4 km o hyd.

Mae’r drws yn awr yn agored i ddatrys rhai o ddirgelion mwyaf ein hoes. Mae Prifysgol Caerdydd wedi helpu i ddatgloi’r drws.

Roedd 16 o’r gwyddonwyr oedd wedi’u rhestri fel awduron ar y papur o Gaerdydd, roedd 20 arall wedi gweithio yma yn ystod y ddegawd ddiwethaf, ac roedd tua un rhan o chwech o’r dyfyniadau yn y papur a oedd yn amlinellu’r ymchwil a oedd yn sail i’r darganfyddiad, yn cyfeirio at waith ymchwil Prifysgol Caerdydd.

Mae myfyrwyr Caerdydd yn parhau i weithio ar y dehongliad astrophysical o’r digwyddiad hwn ac mae gan llawer ohonynt rolau allweddol yn y LIGO. Mae’r Brifysgol hefyd yn adeiladu labordy newydd i ddatblygu technoleg newydd.

Rydym wedi newid ein dealltwriaeth o’r bydysawd – ac wedi cyfrannu at ennill gwobr Nobel drwy wneud hynny. Ond beth yw’r rhan mwyaf cyffrous? Dim ond y dechrau yw’r canfyddiadau yma.

Datblygodd Sebastian un o’r modelau blaenllaw a gafodd ei ddefnyddio wrth dadansoddi’r digwyddiad cyntaf. “Mae signalau tonnau Disgyrchol yn rhoi manylion digynsail inni am dyllau du ac ehangiad y bydysawd. Rwy’n hynod falch fy mod wedi gwneud fy noethuriaeth yn ystod y foment hanesyddol yma ac mae Caerdydd wedi chwarae rôl mor bwysig yn y darganfyddiad.”

Darllenwch yr erthygl nesaf am Pam Prifysgolion?:
Mae Prifysgolion yn siapio ein cymunedau a’n llywodraeth

Hefyd yn y gyfres:

Cardiff Connect, Why Universities?

Universities are for changing our horizons

Dr Chris North and Dr Sebastian Khan (MPhys 2012, PhD 2016) work within the Laser Interferometer Gravitational Wave Observatory (LIGO) group, which won the 2017 Nobel Prize for Physics.

A computer generated image of neutron stars colliding

CREDIT: NSF_LIGO_Sonoma State University_A. Simonnet

In 1916, Einstein predicted the existence of gravitational waves as part of his theory of general relativity.

He believed that large-scale cosmic events would cause ripples in space-time and send waves across the Universe. These waves would be so miniscule, though, that Einstein doubted they would ever be detected.

For almost a century, their existence was the last remaining unproven prediction of general relativity.

That was until 2015, when those of us working with the Laser Interferometer Gravitational Wave Observatory (LIGO) registered the subtle signature of gravitational waves from a pair of merging black holes.

Laser interferometry involves splitting a laser beam and observing minute differences between the two halves. When the black holes collided they released more energy than the combined power of all the light from all the stars in the observable Universe, yet this caused the mirrors in the 4km-sized LIGO installations to move just 1/1000th the diameter of a proton.

The door is now open to the unravelling of some of the biggest mysteries of our time. Cardiff University helped to unlock it.

Of the many scientists listed as authors on the detection paper, 16 were from Cardiff, another 20 worked here at some point in the past decade, and nearly one-sixth of the citations in the paper, outlining the research on which the discovery was built, referred to Cardiff-based work.

Cardiff students continue to work on the astrophysical interpretation of this event and many have gone into key roles in LIGO. The University is also building a new lab to develop future technology.

We’ve changed our understanding of the Universe – and contributed to the winning of a Nobel Prize along the way. But the really exciting bit? The discoveries are just beginning.

Sebastian developed one of the leading models used in the analysis of the first event. “Gravitational wave signals give us unprecedented details about black holes and the expansion of the Universe. I’m proud to have done my PhD during this historic moment and that Cardiff has played such an important role in the discovery.”

Read the next Why Universities article:
Universities are for shaping our communities and government

Also in this series: