Publications 2020–2021

2021

269. Electrochemical Bromofunctionalization of Alkenes in a Flow Reactor
J. Seitz, T. Wirth, Org. Biomol. Chem. 2021, 19, in press. DOI

268. Flow Electrosynthesis of Sulfoxides, Sulfones and Sulfoximines without Supporting Electrolytes
N. Amri, T. Wirth, J. Org. Chem. 2021, in press. DOI

267. Flow Electrochemistry: A Safe Tool for Fluorine Chemistry
B. Winterson, T. Renningholtz, T. Wirth, Chem. Sci. 2021, 12, 9053–9059. DOI

266. Hypervalent iodine chemistry and light: photochemical reactions involving hypervalent iodine chemistry
F. V. Singh, T. Wirth, ARKIVOC 2021, vii, 12–47. DOI

265. Sulfur-based chiral iodoarenes: An underexplored class of chiral hypervalent iodine reagents
M. Elsherbini, A. Osi, H. Alharbi, F. Karam, T. Wirth, Synthesis 2021, 53in press. DOI

264. Reactions Promoted by Hypervalent Iodine Reagents and Boron Lewis Acids
A. Dasgupta, C. Thiehoff, P. D. Newman, T. Wirth, R. L. Melen, Org. Biomol. Chem. 2021, 19, 4852–4865. DOI

263. Electrochemistry in Flow for Drug Discovery
B. Winterson, T. Wirth, Top. Med. Chem. 2021, in press. DOI

262. Recent Advances in the Electrochemical Synthesis of Organosulfur Compounds
N. Amri, T. Wirth, Chem. Rec. 2021, in press. DOI

261. Iodine(III) Mediators in Electrochemical Batch and Flow Reactions
T. Wirth, Curr. Opin. Electrochem. 2021, 28, 100701. DOI

260. Chiral Triptycenes: Concepts, Progress and Prospects
N. Khan, T. Wirth, Chem. Eur. J. 202127, 7059–7068. DOI

259. C–N Axial Chiral Hypervalent Iodine Reagents: Catalytic Stereoselective α-Oxytosylation of Ketones
H. Alharbi, M. Elsherbini, J. Qurban, T. Wirth, Chem. Eur. J. 202127, 4317–4321. DOI

258. Synthesis of Ajoene Analogues by Novel Synthetic Strategies
M. Yamamoto Raynbird, S. S. Khokhar, D. Neef, G. J. S. Evans, T. Wirth, Chem. Eur. J. 202127, 3008–3012. DOI

2020

257. Accelerating Electrochemical Synthesis through Automated Flow: Efficient Synthesis of Chalcogenophosphites
N. Amri, T. Wirth, Synlett 2020, 31, 1894–1898. DOI

256. Accelerating biphasic biocatalysis through new process windows
F. Huynh, M. Tailby, A. Finniear, K. Stephens, R. K. Allemann, T. Wirth, Angew. Chem. 2020132, 16632–16637; DOI  Angew. Chem. Int. Ed. 2020, 59, 16490–16495. DOI

255. Selective hydroboration – oxidation of terminal alkenes under flow conditions
M. Elsherbini, F. Huynh, A. Dunbabin, R. K. Allemann, T. Wirth, Chem. Eur. J. 202026, 11423–11425. DOI Highlighted in Synfacts

254. Hypervalent Iodine(III)-Catalysed Enantioselective α-Acetoxylation of Ketones
T. Hokamp, T. Wirth, Chem. Eur. J. 202026, 10417–10421. DOI

253. Short Total Synthesis of Ajoene, (E,Z)-4,5,9-Trithiadodeca-1,6,11-triene 9-oxide, in Batch and (E,Z)-4,5,9-Trithiadodeca-1,7,11-triene in Continuous Flow
M. Yamamoto Raynbird, F. Silva, H. Smallman, S. S. Khokhar, D. Neef, G. J. S. Evans, T. Wirth, Chem. Eur. J. 202026, 8363–8367. DOI

252. Automated Electrochemical Selenenylations
N. Amri, T. Wirth, Synthesis 2020, 52, 1751–1761. DOI

251. Immobilised Enzymes for Sesquiterpene Synthesis in Batch and Flow Systems
D. Valikhani, P. L. Srivastava, R. K. Allemann, T. Wirth, ChemCatChem 2020, 12, 2194–2197. DOI

250. 1,3-Carboboration of Iodonium Ylides
T. A. Gazis, B. A. Mohajeri, D. Willcox, D. M. C. Ould, J. Wenz, J. M. Rawson, M. S. Hill, T. Wirth, R. L. Melen, Chem. Commun. 2020, 56, 3345–3348. DOI