News

March 2020 – In light of the current circumstances of COVID-19, we decided to temporarily shut down the lab and work remotely from home. (18 March 2020)

December 2019 – Farewell to Samuel Clabaut (Erasmus), who visited shortly with us for 8 weeks from the École nationale de chimie physique et biologie de Paris (ENCPB).

October 2019 – YLW welcomes Anna Wright and Dmytro Abdulakh to join the group. In her EPSRC funded Ph.D. project, Anna will design and study novel triplet photosensitizers that are free from heavy elements. Dmytro will be elucidating the crystal packing of aliphatic chains in porous framework structures in his MChem project.

June-July 2019 – After the first semester in Cardiff, Yi-Lin enjoyed the break by presenting in four conferences at ETH Zurich, Cardiff University, University of Liverpool, and RSC Burlington House. It was great to interact with the scientific giants, interact with researchers in various fields, and reunite with old friends. Thank you, François.

May 2019 – Yi-Lin gave his first academic seminar at the 18th Cardiff Chemistry Conference on Energised Molecular Self-assemblies.

February 2019 – YLW welcomes Abigail Gill to join the group. In her B.Sc. final year project, Abi is going to explore organic room-temperature phosphorophores enabled by supramolecular interactions.

May 2018 – Heterogeneous Super-reductant. Radical anion excited states can provide remarkably negative reducing potentials for carrying out a variety of difficult reductions. Collaborating with the Farha group, we built this capability into a MOF structure that preserves the ability of naphthalene diimide radical anion excited states to reduce dichloromethane at a potential near –2.1 V vs. SCE (DOI: 10.1021/acs.chemmater.8b00720). This work was the most read article of Chem. Mater. in April.

February 2018 – Nonplanar building blocks make better organic frameworks. Stacking of layered, two-dimensional metal- or covalent organic frameworks (MOFs and COFs) has provided a wide range of porous and crystalline materials with interesting magnetic, optoelectronic, and catalytic properties. The eclipsed, face-to-face arrangement between molecular building blocks is usually believed to maximize the dispersive interaction for self-association and thus planar polycyclic aromatic hydrocarbons are often exploited in the design of new functional 2D organic frameworks. Using the bio-inspired G-quadruplex organic framework as a platform, we elucidated the intricate balance between molecular non-planarity and pi-stacking interaction in determining the crystallinity of 2D frameworks.

January 2017 – DNA nucleobase to form crystalline porous organic framewroks. Continuing our work of G-quadruplex-driven self-assembly, we found that the same strategy can be used to guide the formation of highly crystalline organic frameworks consisted of segregated donor/acceptor chromophore pi-stacks.  The materials display, in addition to high porosity, facile carrier generation and mobility, and can be applied as the cathode material in lithium-ion batteries.   The joint force of scientists from three departments (Hupp/Farha @ Chem., Snurr @ Chem. Eng. and Hersam @ Mat Sci.) made this work possible.  Thanks, everyone!

January 2016 – Singlet fission in multi-crystalline diketopyrrolopyrrole (DPP) derivatives observed. The nice work of Pat reports the one of the first observation and thorough study of singlet fission processes in DPP materials, a common class of industrial pigments.  This work opens a new direction for SF study (DOI: 10.1021/acs.jpcb.5b10565).

March 2015 – Photo-induced charge transfer in G-quadruplexes continues to fascinate the JACS readers. After our first G-quadruplex paper in 2013 (DOI: 10.1021/ja407648d), photoinduced charge transfer in self-assembled, monodispersed G-quadruplex of a donor-acceptor triad was highlighted again in JACS Spotlight (DOI:10.1021/jacs.5b02864 , and DOI:10.1021/ja4093727 for the 2013 paper)! The combined transient absorption, stimulated Raman, and electron paramagnetic spectroscopies suggested the hole delocalization in the H-bonded cyclic guanine moieties (DOI: 10.1021/jacs.5b00977).