CH4103 Organic and Biological Chemistry
LCM Lecture 5

Dr Louis C. Morrill
School of Chemistry, Cardiff University
Main Building, Rm 1.47B
MorrillLC@cardiff.ac.uk

Autumn Semester

For further information see Learning Central: CH4103/Learning Materials/LCM
To best prepare yourself for the contents of this lecture, please refresh:

- Atomic and molecular orbitals (Unit 1, Lecture 2)
- Molecular shape and hybridisation (Unit 1, Lecture 2)
- Sigma and pi bonds (Unit 1, Lecture 2)
- Electronegativity and bond polarisation (Unit 1, Lecture 3)
- Stereochemistry (Unit 1, Lecture 4-7)
- Reactive intermediates – carbocations (Unit 1, Lecture 8)
- Acids and bases – pK_a (Unit 1, Lecture 9)
- Reaction thermodynamics (Unit 2, Lecture 1) and kinetics (Unit 2, Lecture 2)
- Curly arrow pushing mechanisms (Unit 2, Lecture 3) and S_{N2} (Unit 2, Lecture 4)

For further information see Learning Central: CH4103/Learning Materials/LCM
Key learning objectives:

• Know the difference between the possible mechanisms for nucleophilic substitution at saturated carbon – S_{N2} and S_{N1}

• The rate law for a S_{N1} reaction

• The free energy diagram for a S_{N1} reaction

• The curly arrow pushing mechanism, molecular orbital analysis, intermediate and stereochemical outcome of a S_{N1} reaction

• The factors that favour a S_{N1} mechanism including the nature of the substrate, nucleophile, solvent and leaving group

• Synthetic Analysis – How to favour one substitution mechanism over the other?
Nucleophilic Substitution at Saturated Carbon

A substitution reaction exchanges one group for another

leaving group \(\rightarrow \) electrophile (substrate) + nucleophile \(\rightarrow \) substitution

This process can happen in two separate ways:

1) Nucleophile attacks at the same time as the leaving group goes \(- S_N^2 \) mechanism

2) Leaving group goes first, forming a carbocation intermediate that is attacked by a nucleophile in a second step \(- S_N^1 \) mechanism

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Rate Law

- We have already seen that tertiary alkyl halides are unreactive towards S_N2 reaction. However, substitution can occur even with fairly poor nucleophiles such as water.

- The rate of these processes are dependent only on the electrophile concentration.

Curly Arrow Pushing Mechanism

Rate Law

$$ \text{Rate} = \frac{d \text{[Products]}}{dt} = k_{obs} \text{[substrate]}^1 $$

- This dependence implies that only the electrophile is involved in the rate determining step of the reaction, i.e. the step with the highest activation energy, E_a.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Free Energy Diagram

- The S_N1 reaction proceeds through a planar carbocation intermediate. Ionisation is disfavoured and is associated with the high energy barrier, consistent with rate law

For further reading refer to *Organic Chemistry* 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Curly Arrow Pushing Mechanism

- Consider the substitution reaction shown below:

 \[
 \text{water nucleophile} \quad + \quad \text{alkyl halide electrophile} \quad \rightarrow \quad \text{alcohol product} \quad + \quad \text{hydrogen bromide by-product}
 \]

 50:50 Enantiomers

- Such processes have a stepwise mechanism involving an intermediate carbocation:

 1. Ionisation (slow step): $n-$Pr$^+\text{Br}^-$
 2. Addition (fast step): $n-$Pr$^+\text{OH}_2$
 3. Deprotonation (very fast step): $n-$Pr$^+\text{OH}^-$

Key Orbital Interactions

- Curly arrow 1: Breaking of C-Br σ bond with the two bonding electrons ending up on bromide anion
- Curly arrow 2: Filled non-bonding O sp^3 orbital to empty C $2p$ orbital, forming new C-O σ bond

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Stereochemistry

- The S_N1 reaction proceeds with **racemisation** at the carbon centre.

![Chemical reaction diagram]

- Since the intermediate carbocation is **planar**, the product will be racemic as the nucleophile can attack the empty 2p orbital from either face.

![Orbital interaction diagram]

- **Enantiomers** formed (racemate)

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Substrate Dependence

- Unimolecular (S_N1) substitutions are only observed for substrates that can form a stable carbocation.

Least Reactive → Most Reactive

Methyl | Primary (1°) | Secondary (2°) | Tertiary (3°)

Least Stable → Most Stable

Methyl | Primary (1°) | Secondary (2°) | Tertiary (3°)

Carbocation intermediate:
- When R groups = H → slow reaction
- When one or more R groups = alkyl → faster reaction

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359.
The \(S_N1 \) Reaction – Substrate Dependence

- Tertiary alkyl halides are best for \(S_N1 \) reactions because alkyl substituents stabilise a carbocation by **hyperconjugation** (inductive effect).

\[
\begin{align*}
\text{Tertiary (3\textdegree) carbocation} & \quad \text{empty 2p orbital on carbon} & \quad \text{stabilisation by donation from filled C-H \(\sigma \) orbitals into empty 2p orbital of planar carbocation}
\end{align*}
\]

- No stabilisation by hyperconjugation is possible for methyl carbocations. Why?
The S_N1 Reaction – Substrate Dependence

- An adjacent C=C π system also stabilises a carbocation (mesomeric effect)

- Allylic electrophiles react well by the S_N1 mechanism as the allyl cation is stabilised

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Substrate Dependence

- What about when we generate an unsymmetrical allylic cation?

- In situations where an unsymmetrical allylic cation is generated as a stabilised intermediate, the **regioselectivity** (where the nucleophile attacks) is determined by steric hindrance.

- Nucleophilic attack is faster at the less hindered end of the allylic cation

- What other groups can help stabilise a carbocation intermediate and favour S_N1?

- Remember to look out for carbocation rearrangements (cf. Lecture 3)

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Substrate Dependence

- Benzylic systems also stabilise carbocation intermediates

\[
\begin{align*}
\text{LG} & \quad \text{Nuc} \\
+ \quad & \text{LG}^{-} \\
\text{resonance stabilised benzylic cation} \\
\text{nucleophilic attack will always occur on the side chain so that aromaticity is preserved}
\end{align*}
\]

- There is no ambiguity in the site of nucleophilic attack with benzylic systems. Nucleophilic attack will never occur on the ring as this would result in a loss of aromaticity – very disfavoured energetically

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Substrate Dependence

- Carbocations are also stabilised by an adjacent lone pair of electrons

- You should look out for this type of S_N1 reaction whenever there are two atoms such as O, N, S, Cl or Br joined to the same carbon atom. The better leaving groups (Cl and Br) need no acid catalyst but the less good ones (N, O and S) usually do.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359.
The $S_N 1$ Reaction – Nucleophile

- In an $S_N 1$ reaction the **nucleophile** is not important with regard to **rate** – i.e. it is not a component of the rate equation.

- The rate-determining step of the reaction is loss of the leaving group, so good and bad nucleophiles all give products. We don’t need to deprotonate the nucleophile to make it more reactive, e.g. water and hydroxide work equally well.

- $S_N 1$ reactions on alcohol substrates are carried out under acidic conditions to assist LG departure. For example, consider the formation of a t-butyl ether shown below:

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
The \(S_N1 \) Reaction – Solvent

- \(S_N1 \) reactions are typically carried out in polar protic solvents

- The rate-determining step of a \(S_N1 \) reaction involves the formation of ions (usually a negatively charged leaving group and a positively charged carbocation) with the associated transition state being more polar than the starting materials

- The rate of \(S_N1 \) reactions will be increased by polar protic solvents that can solvate these ions and hence stabilise (reduce the energy) of the transition state

- Examples of polar protic solvents that are good for \(S_N1 \) reactions include methanol, water, acetic acid, sulfuric acid and hydrochloric acid

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
The S_N1 Reaction – Leaving Group

- The same trends for leaving groups apply to both S_N1 and S_N2 reactions

<table>
<thead>
<tr>
<th>Acid</th>
<th>pK_a</th>
<th>Conjugate Base / Leaving Group</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>-10</td>
<td>I$^-$</td>
<td>Iodide</td>
</tr>
<tr>
<td>HBr</td>
<td>-9</td>
<td>Br$^-$</td>
<td>Bromide</td>
</tr>
<tr>
<td>HCl</td>
<td>-8</td>
<td>Cl$^-$</td>
<td>Chloride</td>
</tr>
<tr>
<td>HOSO_2R</td>
<td>-3</td>
<td>$-\text{OSO}_2\text{R}$</td>
<td>Sulfonate</td>
</tr>
<tr>
<td>H_3O^+</td>
<td>-1.7</td>
<td>H_2O</td>
<td>Water</td>
</tr>
<tr>
<td>HF</td>
<td>+3.2</td>
<td>F$^-$</td>
<td>Fluoride</td>
</tr>
<tr>
<td>H_2S</td>
<td>+7.0</td>
<td>HS$^-$</td>
<td>Thiolate</td>
</tr>
<tr>
<td>HCN</td>
<td>+9.4</td>
<td>$-\text{CN}$</td>
<td>Cyanide</td>
</tr>
<tr>
<td>H_2O</td>
<td>+15.7</td>
<td>$-\text{OH}$</td>
<td>Hydroxide</td>
</tr>
<tr>
<td>HOCH$_2$CH$_3$</td>
<td>+15.9</td>
<td>$-\text{OCH}_2\text{CH}_3$</td>
<td>Ethoxide</td>
</tr>
<tr>
<td>HOR</td>
<td>+16 to +18</td>
<td>$-\text{OR}$</td>
<td>Alkoxide</td>
</tr>
</tbody>
</table>

Reminder: Acids and bases
Unit 1, Lecture 9

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359.
The S\textsubscript{N}1 Reaction – Cheat Sheet

- For the S\textsubscript{N}1 reaction, you must remember the following key information:

 Mechanism:

 \[
 \text{rate} = \frac{d\ [\text{products}]}{dt} = k_{\text{obs}}[\text{substrate}]^1
 \]

 Rate Law:

 Racemisation:

 ![Racemisation Diagram]

 Factors that favour an S\textsubscript{N}1 mechanism:

 - **Substrate**
 - tertiary, allylic, benzylic, heteroatom-stabilised - all good substrates
 - secondary - moderate
 - primary, methyl - bad

 - **Nucleophile**
 - no necessity for strong nucleophiles, neutral nucleophiles are ok too
 - e.g. MeOH, H\textsubscript{2}O, AcOH

 - **Solvent**
 - polar protic
 - e.g. H\textsubscript{2}O, MeOH, AcOH, H\textsubscript{2}SO\textsubscript{4}

 - **Leaving Group**
 - highly stabilised / conjugate acid
 - has a low pK\textsubscript{a} value
 - e.g. I-, Br-, 2OSO\textsubscript{2}R

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
S\textsubscript{N}1 vs S\textsubscript{N}2 – Substrate Dependence

- We are now in a position to draw comparisons between S\textsubscript{N}1 and S\textsubscript{N}2 reactions. S\textsubscript{N}2 best substrate = methyl or primary halides (lowest steric congestion of TS). S\textsubscript{N}1 best substrate = tertiary halides (best stabilisation of carbocation intermediate).

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Me — X</th>
<th>R (\text{H}X)</th>
<th>R (\text{R}X)</th>
<th>R (\text{R} \text{R})</th>
<th>R (\text{R} \text{R} \text{R})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neopentyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S\textsubscript{N}1 Mechanism</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S\textsubscript{N}2 Mechanism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Substrate

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(\text{X} =) (\text{RO}) (\alpha)-alkoxy (adjacent lone pair)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allylic</td>
<td></td>
</tr>
<tr>
<td>Benzylic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S\textsubscript{N}1 Mechanism</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S\textsubscript{N}2 Mechanism</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{=}\) excellent, \(\text{=}\) good, \(\text{=}\) moderate, \(\text{=}\) bad

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
Lecture 5: Introduction to Substitution Reactions – S_N1

S_N1 vs S_N2 – Solvent

- The solvent plays a key role in favouring either S_N1 and S_N2 mechanisms

- Polar protic solvents favour S_N1 by stabilising (lowering the energy of) polar intermediates and transition states. Polar aprotic solvents favour S_N2 by raising the energy of the nucleophile, giving a smaller activation energy, E_a

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
S_N1 vs S_N2 – Other Factors and Overall Summary

Nucleophile
- S_N2 tends to require strong nucleophiles – generally means **negatively charged** nucleophiles such as NC^−, RS^−, N_3^−, I^− and others
- S_N1 can also proceed with weak nucleophiles including **neutral** nucleophiles such as MeOH, H_2O, AcOH and others

Leaving Group
- This is not the most important factor as both S_N2 and S_N1 mechanisms are favoured by the presence of a good leaving group such as I^−, Br^−, −OSO_2R and others

- In summary, S_N1 and S_N2 reactivity are almost mirror images of each other and can be readily distinguished from each other, as shown below:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Favours S_N2 Mechanism</th>
<th>Favours S_N1 Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Methyl or primary</td>
<td>Tertiary</td>
</tr>
<tr>
<td>Nucleophile</td>
<td>Strong nucleophile</td>
<td>Any nucleophile</td>
</tr>
<tr>
<td>Leaving group</td>
<td>Good leaving group</td>
<td></td>
</tr>
<tr>
<td>Solvent</td>
<td>Polar aprotic</td>
<td>Polar protic</td>
</tr>
</tbody>
</table>

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359.
Key learning objectives:

- Know the difference between the possible mechanisms for nucleophilic substitution at saturated carbon – S_N2 and S_N1

- The rate law for a S_N1 reaction

- The free energy diagram for a S_N1 reaction

- The curly arrow pushing mechanism, molecular orbital analysis, intermediate and stereochemical outcome of a S_N1 reaction

- The factors that favour a S_N1 mechanism including the nature of the substrate, nucleophile, solvent and leaving group

- **Synthetic Analysis** – How to favour one substitution mechanisms over the other?
To reinforce your understanding of the contents of this lecture, please refer to:

- Practice questions provided on the next three slides.

- Online practice questions http://www.oxfordtextbooks.co.uk/orc/clayden2e/
 Username: clayden2e
 Password: compound

- Online practice questions http://www.chem.ox.ac.uk/vrchemistry/iom/#

- CH4103 Online Test 5

- CH4103 Workshop 2
For further practice, attempt the following questions in your own time:

- Q1) Why would both of the following compounds be bad substrates for a S_N^1 reaction?

- Q2) Draw a curly arrow pushing mechanism for the following reactions, indicating the key orbital interactions involved.
For further practice, attempt the following questions in your own time:

• Q3) What 2 products might be formed from the following $S_N 1$ reaction and which might you expect to be the major product?

```
MeCH=CHBr + H₂O → 2 products formed in different amounts
```

• Q4) What makes trityl chloride an excellent substrate for a $S_N 1$ reaction?

```
Ph₃C-Cl
trityl chloride
```

• Q5) Draw a curly arrow mechanism for the following $S_N 1$ reaction

```
MeO⁻ R¹ R² + H₃O⁺ → HO⁻ R¹ R²
```
For further practice, attempt the following questions in your own time:

- Q6) Predict if the following reactions will proceed via an $S_{N}1$ or $S_{N}2$ mechanism

\[
\text{PhS}^- + \text{MeBr} \xrightarrow{\text{Acetone}} \text{PhSMe} + \text{Br}^- \\
\text{MeOH} + \text{t-BuBr} \xrightarrow{\text{MeOH}} \text{t-BuOMe} + \text{HBr} \\
\text{MeOH} + \text{PhBr} \xrightarrow{\text{MeOH}} \text{PhOMe} + \text{HBr} \\
\Theta : \text{N}_3 + \text{MeI} \xrightarrow{\text{DMSO}} \text{MeN}_3 + \text{I}^-
\]
CH4103 Organic and Biological Chemistry
LCM Lecture 6

Dr Louis C. Morrill
School of Chemistry, Cardiff University
Main Building, Rm 1.47B
MorrillLC@cardiff.ac.uk

Autumn Semester

For further information see Learning Central: CH4103/Learning Materials/LCM
To best prepare yourself for the contents of this lecture, please refresh:

- Sigma and pi bonds (Unit 1, Lecture 2)
- Molecular shape and hybridisation (Unit 1, Lecture 2)
- Stereochemistry (Unit 1, Lecture 4-7)
- Conformation of alkanes and cyclohexanes (Unit 1, Lecture 5)
- Reaction thermodynamics (Unit 2, Lecture 1) and kinetics (Unit 2, Lecture 2)
- Curly arrow pushing mechanisms (Unit 2, Lecture 3)
- The $S_{N}2$ reaction (Unit 2, Lecture 4)
Key learning objectives:

• Know the difference between the possible mechanisms for elimination – E2, E1 and E1\textsubscript{cb}

• The rate law for an E2 reaction

• The curly arrow pushing mechanism, molecular orbital analysis, transition state and stereochemical outcome of an E2 reaction

• The free energy diagram for an E2 reaction

• Regioselectivity of E2 reaction – Zaitsev’s rule

• Stereospecificity of E2 reaction

• The factors that favour an E2 mechanism including the nature of the substrate, base, solvent and leaving group

For further information see Learning Central: CH4103/Learning Materials/LCM
Substitution vs Elimination

- In the last two lectures we discussed two possible substitution mechanisms:

 S_N2 mechanism

 ![Diagram of S_N2 mechanism]

 - Electrophile (substrate) attacks the nucleophile at the same time as the leaving group goes.
 - Concerted (1 step) process.

 S_N1 mechanism

 ![Diagram of S_N1 mechanism]

 - Leaving group goes first, followed by nucleophile attack on the carbocation.

- In practice, most substitution reactions also produce some amount of an alkene that forms via a competing elimination process:

 ![Diagram of elimination product]

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
Substitution vs Elimination

- In fact, both S_{N2} and S_{N1} reactions are always in competition with the corresponding elimination mechanisms, E2 and E1. E$_{1\text{cb}}$ is another possible elimination mechanism.

E2 mechanism

$$\text{Y}^- + \text{H} + \text{X} \rightarrow \text{H} \rightarrow \text{X} \rightarrow \text{R}$$

- Deprotonation at the same time as the leaving group leaves.
- Concerted (1 step) process.

E1 mechanism

$$\text{H} + \text{R}^+ \rightarrow \text{R}^-$$

- Step 1: Leaving group goes first.
- Step 2: Deprotonation by a base.

E1$_{cb}$ mechanism

$$\text{H} + \text{X} \rightarrow \text{X}^- + \text{R}^+$$

- Step 1: Deprotonation by a base.
- Step 2: Leaving group goes second.

- In this lecture we will discuss what factors favour the E2 mechanism and the amount of elimination products that we will observe for a given set of conditions.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Rate Law

- The E2 reaction is the **alternative elimination pathway** for the $S_{N}2$ reaction.

- For E2 reactions, the rate is proportional to both the concentration of the base and the concentration of the substrate, giving the following rate law:

\[
\text{Rate} = \frac{d\text{[Products]}}{dt} = k_{\text{obs}}[\text{base}]^1[\text{substrate}]^1
\]

This dependence implies that both species are involved in the rate determining step of the reaction, i.e. the step with the highest activation energy, E_a.
The E2 Reaction – Free Energy Diagram

- The E2 reaction proceeds through a transition state that involves two σ bonds partially broken with one σ bond and one π bond partially formed.

![E2 Reaction Free Energy Diagram]

For further reading refer to *Organic Chemistry 2nd Ed. (J. Clayden et al.)* Chapter 17 pp. 382-406.
The E2 Reaction – Curly Arrow Pushing Mechanism

- Consider the elimination reaction shown below:

\[
\text{MeO}^- + \text{Me} - \text{Br}\, : \rightarrow \text{Me} = \text{Me} + \text{MeOH} + :\text{Br}^- \\
\text{methoxide base} \quad \text{t-butyl bromide substrate} \quad \text{isobutene product} \quad \text{by products}
\]

- We should now be able to draw a curly arrow pushing mechanism and identify the key orbital interaction associated with this movement of electrons.

Curly arrow 1 - filled non-bonding O sp³ orbital to empty C-H σ* orbital, forming new O-H σ bond

Curly arrow 2 - filled C-H σ bond to empty C-Br σ* orbital, forming new C-C π bond

Curly arrow 3 - breaking of C-Br σ bond with the bonding electrons ending up on bromide anion

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Conformational Analysis

- E2 elimination could occur from one of six possible conformations (MCE Lecture 5)

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Stereoelectronic Requirement

- In an E2 reaction, the new \(\pi \) bond is formed by overlap of the C-H \(\sigma \) bond with the C-X \(\sigma^* \) antibonding orbital. The two orbitals have to lie in the same plane for optimal overlap. Only two of the previous conformations allow this and one is better!

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Regioselectivity

- E2 reactions take place preferentially from the anti-periplanar conformation. What about regioselectivity when multiple different products can still be formed?

- In general the more substituted alkene is formed – Zaitsev’s rule

\[
\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Br} & \quad \text{Me} \quad \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{NaOEt} \\
\text{E2} \\
\text{Me} & \quad \text{Me} \\
\text{Me} + & \quad \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{(E)-alkene} & \quad \text{(Z)-alkene} \\
81\% & \quad 19\%
\end{align*}
\]

- What about the preference for the (E)-alkene? H and Br must be anti-periplanar for E2 reaction but there are two possible conformations

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Regioselectivity

- Alkene stability is not the only factor in determining regioselectivity in E2 reactions.

- More hindered bases afford more of the less substituted alkene. Consider the example below:

\[
\begin{array}{cc}
\text{Me} & \text{Br} \\
\text{Me} & \text{Me}
\end{array} \xrightarrow{\text{Base}} \begin{array}{cc}
\text{Me} & \text{Me} \\
\text{Me} & \text{Me}
\end{array} + \begin{array}{cc}
\text{Me} & \text{Me} \\
\text{Me} & \text{Me}
\end{array}
\]

- Refer to the end of the lecture for additional practice questions on this topic.

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Stereochemistry

- In some cases the product formed depends on which diastereoisomer of starting material is used – **stereospecific reaction**

 ![Diastereoisomer 1](image1)

 ![Diastereoisomer 2](image2)

- Only one of the hydrogen atoms can be attacked by a base. Why?

- Reactions in which the stereochemistry of the product is determined by the stereochemistry of the starting material are called **stereospecific**

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Cyclohexane Rings

- The stereoelectronic requirement in an E2 reaction for the breaking bonds to be antiperiplanar has important implications for E2 reactions from cyclohexane systems.

- Cyclohexyl chloride can only undergo E2 elimination in one conformation.

```
cyclohexyl chloride

more stable conformer
no C-H bonds are antiperiplanar to C-Cl bond
no E2 reaction possible

less stable conformer
2 C-H bonds are antiperiplanar to C-Cl bond
E2 reaction possible

E2
```

- In cyclohexane systems the leaving group must be axial and there must be an axial β-hydrogen available for E2 reaction to proceed.

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Cyclohexane Rings

- The stereoelectronic requirement in an E2 reaction for the breaking bonds to be antiperiplanar has important implications for E2 reactions from cyclohexane systems.

- In certain cases regiospecific elimination can occur.

![Diagram of E2 reaction with cyclohexane rings]

- The other β-hydrogen atom is not removed as it is placed at the equatorial position and is not antiperiplanar to the leaving group. Hence only one alkene product formed.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Substrate Dependence

- S_N2 and E2 are always in competition. If we slow down one pathway, the relative importance of the other pathway will increase.

- The rate of E2 reactions are dependent upon the stability to the alkene formed. A more stable alkene product means a more stable transition state and a faster reaction. Therefore, in terms of alkyl halide starting material $3^\circ > 2^\circ > 1^\circ$.

- Remember, for the S_N2 reaction, methyl or primary alkyl halides give faster reactions.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Substrate Dependence

- S_N2 and E2 are always in competition. If we slow down one pathway, the relative importance of the other pathway will increase.

- Consider the following examples:

 - Tertiary (3°) alkyl halide
 - $\text{Me-Br} \rightarrow \text{Me-}\equiv\text{Me}$
 - E2 only
 - S_N2 is poor on tertiary halides

 - Secondary (2°) alkyl halide
 - $\text{Me-Br} \rightarrow \text{Me-}\equiv\text{Me}$
 - E2 48%
 - S_N2 52%

 - Primary (1°) alkyl halide
 - $\text{Me-Br} \rightarrow \text{Me-OMe}$
 - S_N2 only
 - E2 is poor on primary halides

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E2 Reaction – Base and Other Factors

- Remember that good nucleophiles favour S\textsubscript{N}2 reaction, e.g. I−, Br−, NC−, RS−, RSH, N\textsubscript{3}−, R\textsubscript{2}N−, RN\textsubscript{H}\textsubscript{2} and RO−

- **Strong Brønsted bases** are required for E2 reaction, e.g. RO−, R\textsubscript{2}N−, H−, t-BuO− etc.

- Consider the following examples:

 - Leaving group – same as for S\textsubscript{N}1 and S\textsubscript{N}2 reactions (I−, Br−, Cl−, -OSO\textsubscript{2}R, H\textsubscript{2}O best)

 - Solvent – a wide range of solvents can be employed for E2 reactions
The E2 Reaction – Cheat Sheet

For the E2 reaction, you must remember the following key information:

- **Mechanism:**
 - Deprotonation at the same time as the leaving group leaves.
 - Concerted (1 step) process.

- **Rate Law:**
 \[
 \text{Rate} = \frac{d \ [\text{Products}]}{dt} = k_{\text{obs}}[\text{base}]^1[\text{substrate}]^1
 \]

- **Regioselective**
 - Substrate: methyl - not possible, primary - moderate, secondary - good, tertiary, allylic, benzylic - excellent.
 - Base: strong base required, e.g. RO\(^-\), R\(_2\)N\(^-\), H\(^-\) and others.
 - Solvent: A wide range of solvents can be used for E2 reactions.
 - Leaving Group: highly stabilised / conjugate acid has a low pK\(_a\) value, e.g. I\(^-\), Br\(^-\), -OSO\(_2\)R.

For further reading refer to *Organic Chemistry 2\(^{nd}\) Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
Key learning objectives:

• Know the difference between the possible mechanisms for elimination – E2, E1 and E1\text{cb}

• The rate law for an E2 reaction

• The curly arrow pushing mechanism, molecular orbital analysis, transition state and stereochemical outcome of an E2 reaction

• The free energy diagram for an E2 reaction

• Regioselectivity of E2 reaction – Zaitsev’s rule

• Stereospecificity of E2 reaction

• The factors that favour an E2 mechanism including the nature of the substrate, base, solvent and leaving group
To reinforce your understanding of the contents of this lecture, please refer to:

- Practice questions provided on the next two slides.
- Online practice questions http://www.oxfordtextbooks.co.uk/orc/clayden2e/
 Username: clayden2e
 Password: compound
- Online practice questions http://www.chem.ox.ac.uk/vrchemistry/iom/#
- CH4103 Online Test 6
For further practice, attempt the following questions in your own time:

• Q1) What would you expect to be the major products formed from the reactions below? Draw curly arrow mechanisms for product formation.

\[
\text{KO}_{-}\text{Bu} \quad \begin{array}{c}
\text{Me} \\
\text{i-Pr}
\end{array} \quad \text{Br} \quad \text{KI} \\
\text{t-BuOH} \quad \text{Acetone}
\]

• Q2) Would you expect an increase in temperature to favour a substitution or an elimination pathway?

• Q3) Draw all possible elimination products of the following substituted cyclohexanes. Diastereoisomer B reacts 250 times slower than diastereoisomer A. Why?

Diastereoisomer A

\[
\begin{array}{c}
\text{Me} \\
\text{i-Pr}
\end{array} \quad \begin{array}{c}
\text{Cl} \\
\text{EtOH}
\end{array}
\]

Diastereoisomer B

\[
\begin{array}{c}
\text{Me} \\
\text{i-Pr}
\end{array} \quad \begin{array}{c}
\text{Cl} \\
\text{EtOH}
\end{array}
\]
For further practice, attempt the following questions in your own time:

- Q4) What product would you expect to be favoured in each of the following elimination reactions?

- Q5) Why does \(t \)-butyl bromide prefer E2 over \(S_N2 \)?

- Q6) Which alkene product is expected from the following reaction?

- Q7) Which of the following diastereoisomers can undergo E2 reaction?
To best prepare yourself for the contents of this lecture, please refresh:

- Sigma and pi bonds (Unit 1, Lecture 2)
- Molecular shape and hybridisation (Unit 1, Lecture 2)
- Stereochemistry (Unit 1, Lecture 4-7)
- Conformation of alkanes and cyclohexanes (Unit 1, Lecture 5)
- Reaction thermodynamics (Unit 2, Lecture 1) and kinetics (Unit 2, Lecture 2)
- Curly arrow pushing mechanisms (Unit 2, Lecture 3)
- The $S_{N}1$ reaction (Unit 2, Lecture 5)
- The E2 reaction (Unit 2, Lecture 6)
Key learning objectives:

• Know the difference between the possible mechanisms for elimination – E2, E1 and E1\textsubscript{cb}

• The rate law for an E1 reaction

• The free energy diagram for an E1 reaction

• The curly arrow pushing mechanism, molecular orbital analysis and intermediate of an E1 reaction

• Regio- and stereoselectivity of E1 reaction

• The factors that favour an E1 mechanism including the nature of the substrate, base, solvent and leaving group

• Substrates that undergo the E1cb mechanism

• **Synthetic Analysis** – How to favour one elimination mechanism over the other?
Substitution vs Elimination

- Both S_N1 and S_N2 reactions are always in competition with the corresponding elimination mechanisms, E1 and E2. E1$_{cb}$ is another possible elimination mechanism.

- In this lecture, we will discuss what factors favour the E1 and E1$_{cb}$ mechanism and the amount of elimination products that we will observe for a given set of conditions.

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Rate Law

- The E1 reaction is the **alternative elimination pathway** for the S_{N1} reaction.

- For E1 reactions, the rate is proportional to the **concentration of the substrate only**, giving the following rate law:

 \[
 \text{Rate} = \frac{d[\text{Products}]}{dt} = k_{\text{obs}}[\text{substrate}]^1
 \]

- This dependence implies that **only** the substrate is involved in the rate determining step of the reaction, i.e. the step with the highest activation energy, E_a.

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Free Energy Diagram

- The E1 reaction proceeds through a planar carbocation intermediate. Ionisation is disfavoured and is associated with the high energy barrier, consistent with rate law.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Curly Arrow Pushing Mechanism

- Consider the elimination reaction shown below that occurs by E1 mechanism:

\[
\text{Me} \quad \text{Me} \quad \text{OH} \quad \xrightarrow{\text{H}_2\text{SO}_4, \Delta} \quad \text{Me} \quad \text{Me} \quad \text{Me} \quad + \quad \text{H}_2\text{O}
\]

\text{t-butyl alcohol} \quad \text{substrate} \quad \text{isobutene} \quad \text{product}

- We should now be able to draw a curly arrow pushing mechanism and identify the orbitals associated with this movement of electrons:

\[
\begin{align*}
\text{Me} & \quad \text{Me} & \quad \text{OH} & \quad \xrightarrow{\text{H}_2\text{SO}_4, \Delta} & \quad \text{Me} & \quad \text{Me} & \quad \text{Me} & \quad + & \quad \text{H}_2\text{O} \\
\text{carbocation intermediate} & \quad \text{new } \pi \text{ bond}
\end{align*}
\]

Curly arrow 1 - breaking C-O σ bond with the bonding electrons ending up on neutral water
Curly arrow 2 - filled non-bonding O sp³ orbital to empty C-H σ* orbital, forming new O-H σ bond
Curly arrow 3 - filled C-H σ bond to empty C 2p orbital, forming a new C=C π bond

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Examples

- Consider the following three elimination reactions that proceed via an E1 mechanism:

1. \(\text{Me} - \text{Me} - \text{OH} \xrightarrow{\text{H}_2\text{SO}_4, \Delta} \text{Me} - \text{Me} - \text{H}_2\text{O} + \text{Me} \)
 - Only one alkene product possible

2. \(\text{Me} - \text{Me} - \text{OH} \xrightarrow{\text{H}_2\text{SO}_4, \Delta} \text{Me} - \text{Me} - \text{Me} + \text{Me} - \text{Me} + \text{H}_2\text{O} \)
 - Two alkene products possible (regioisomers)
 - 90% trisubstituted alkene
 - 10% disubstituted alkene

3. \(\text{Me} - \text{Me} - \text{OH} \xrightarrow{\text{H}_2\text{SO}_4, \Delta} \text{Me} - \text{Me} - \text{Me} + \text{Me} - \text{Me} + \text{H}_2\text{O} \)
 - Two alkene products possible (stereoisomers)
 - 75% trans or (E)-alkene
 - 25% cis or (Z)-alkene

- We can rationalise the amounts of different alkenes formed in each reaction.
The E1 Reaction – Regioselectivity

- Consider the following elimination reaction that proceeds via an E1 mechanism:

\[
\text{Me} - \text{Me} - \text{OH} \quad \xrightarrow{\text{H}_2\text{SO}_4, \Delta} \quad \text{Me} = \text{Me} + \text{Me} = \text{Me} + \text{H}_2\text{O}
\]

- E1 elimination always favours the more substituted (and hence more stable) alkene product – Zaitsev’s rule.

- More substituted alkenes are more stable due to overlap between filled \(\sigma\) orbitals and the empty \(\pi^*\) orbital of the alkene:

 - **Ethene**: no filled C-H \(\sigma\) bonds parallel with \(\pi^*\)
 - **Propene**: filled C-H \(\sigma\) bonds parallel with \(\pi^*\)
 - **(E)-pent-2-ene**: filled C-H and C-C \(\sigma\) bonds parallel with \(\pi^*\)

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Regioselectivity

- The stability of the alkene product is reflected at the transitions states for the 2nd deprotonation step. The more stable the alkene product, the lower the energy of the transition state, leading to a smaller activation energy (E_a) and a faster reaction.

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Stereoselectivity

Consider the following elimination reaction that proceeds via an E1 mechanism:

\[\text{Et} \text{Me} \text{OH} \xrightarrow{\text{H}_2\text{SO}_4, \Delta} \text{Me} \text{Me} \text{Et} \text{Et} + \text{Me} \text{Me} \text{Et} \text{Me} + \text{H}_2\text{O} \]

- E1 elimination usually favours the formation of the trans or (E)-alkene product.
- The new \(\pi \) bond can only form if the vacant p orbital of the carbocation and the breaking filled C-H \(\sigma \) bond are aligned parallel.
- In the example shown, there are two possible conformations with one more stable:

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Stereoselectivity

- The stability of the intermediate is reflected at the transitions states for the 2^{nd} deprotonation step. The more stable the intermediate, the lower the energy of the transition state, leading to a smaller activation energy (E_a) and a faster reaction.

For further reading refer to Organic Chemistry 2^{nd} Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Stereoselectivity

- However, the E1 reaction is **NOT stereospecific**, i.e. the stereochemistry of the products formed are independent of the stereochemistry of the starting materials. In other words, a hydrogen atom is **NOT** required to be anti-periplanar to the LG.

- Consider the following example. With both diastereoisomers, elimination occurs from the carbocation intermediate where the two large phenyl groups are on opposite sides, giving rise to the most stable \((E)\)-alkene.

![Diagram showing the E1 reaction with diastereoisomers](image)

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
Remember from lecture 3, if a carbocation can rearrange to form a more stable carbocation, it will. Consider the reaction below. We should be able to rationalise the quantities of all products formed.

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Substrate Dependence

- Just like in the S_N1 reaction, substrates that can stabilise the intermediate carbocation are good substrates for the E1 reaction.

Tertiary

- Stabilised carbocations

Allylic

- Good substrates for E1

Benzylic

- Less stable carbocation

α-heteroatom

- Occassionally eliminate by E1

- Unstable carbocation

- Never eliminate by E1

- Substrates that cannot eliminate by E1 or E2 - no β-hydrogen atoms

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Base and Other Factors

- In an E1 reaction the **base** is not important with regard to **rate** – i.e. it is not a component of the rate equation. In general a better **nucleophile** favours S_N1 and a better **Brønsted base** favours E1. Typical cases for E1 include weak bases (e.g. ROH, R_2NH) or the reactions are carried out in acid (e.g. HCl, H_2SO_4, H_3PO_4)

- **Leaving group** – needs a good leaving group (I^-, Br^-, $^-OSO_2R$ best, H_2O okay)

- **Solvent** – as for S_N1 polar protic solvents are favoured as they stabilise the carbocation intermediate and corresponding TS, lowering E_a and increasing rate

- **Temperature** – In elimination reactions there is an increase in the total number of molecules, representing an increase in entropy (+ve ΔS) for the forward reaction. ΔS is more +ve for elimination than substitution. Therefore, higher temperatures will favour elimination over substitution as ΔG° becomes more negative.

\[
\Delta G = \Delta H_{sys} - T\Delta S_{sys}
\]

As T increases, ΔG decreases, favouring forward reaction

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1 Reaction – Cheat Sheet

1. For the E1 reaction, you must remember the following key information:

 - Mechanism:

 \[
 \begin{align*}
 \text{substrate} & \quad \xrightarrow{\text{leaving group goes first}} \quad \text{base} \quad \xrightarrow{\text{deprotonation by a base}} \quad \text{carbocation intermediate} \\
 \text{Step 1} & \quad \text{Step 2}
 \end{align*}
 \]

 - Rate Law:

 \[
 \text{Rate} = \frac{d [\text{Products}]}{dt} = k_{\text{obs}}[\text{substrate}]^{1}
 \]

 - Regioselective
 - Stereoselective (not stereospecific)

2. Factors that favour an E1 mechanism:

 - **Substrate**
 - methyl - not possible
 - primary - bad
 - secondary - moderate
 - tertiary - good
 - allylic, benzylic - good

 - **Base**
 - not important, usually weak bases (e.g. ROH, R₂NH) or done in acid (e.g. H₂SO₄, H₃PO₄)

 - **Solvent**
 - polar protic e.g. H₂O, MeOH, AcOH, H₂SO₄

 - **Leaving Group**
 - highly stabilised / conjugate acid
 - has a low pKₐ value e.g. I⁻, Br⁻, -OSO₂R

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1\textsubscript{cb} Reaction

- There is another important elimination mechanism that we need to briefly consider – the E1\textsubscript{cb} reaction

\[\text{E2 mechanism} \]

\[\text{E1 mechanism} \]

\[\text{E1}\textsubscript{cb} mechanism \]

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
The E1cb Reaction – Curly Arrow Pushing Mechanism

• The E1\textsubscript{cb} reaction is an elimination catalysed by a strong base (KOH) and occurs in substrates containing a poor leaving group (e.g. -OH)

\[\text{Poor leaving group - unlikely E2} \]
\[\text{Secondary alcohol - unlikely E1} \]

• The key is the presence of the carbonyl group, making the \(\alpha\)-hydrogen atoms more acidic due to stabilisation of the resulting anion. Alkene formation occurs in a second rate-determining step

• The leaving group is lost from the conjugate base of the starting material, hence E1\textsubscript{cb}. If the alkene in the product is conjugated with a carbonyl group (or other functionality containing a \(\pi\) bond, e.g. nitrile, imine etc.) mechanism probably E1\textsubscript{cb}

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 17 pp. 382-406.
E1 vs E2 vs $E_{1\text{cb}}$ – Substrate Dependence

- We are now in a position to draw comparisons between E1, E2 and $E_{1\text{cb}}$ reactions.
- E2 best substrate = tertiary halides, allylic, benzylic (most stable alkene formed).
- E1 best substrate = tertiary halides, allylic, benzylic and α-heteroatom (best stabilisation of carbocation intermediate).
- $E_{1\text{cb}}$ occurs for substrates where the LG is β to a π bond (e.g. carbonyl)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Primary</th>
<th>Secondary</th>
<th>Tertiary</th>
<th>Allylic</th>
<th>Benzylic</th>
<th>α-alkoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 Mechanism</td>
<td>😞</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
</tr>
<tr>
<td>E2 Mechanism</td>
<td>😞</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
</tr>
</tbody>
</table>

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
E1 vs E2 – Solvent

- The solvent plays a key role in determining E1 vs E2.
- Polar protic solvents strongly favour E1 by stabilising (lowering the energy of) polar intermediates and transition states.
- The E2 is not significantly affected by the solvent and proceeds in a wide variety...

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
E1 vs E2 – Other Factors and Overall Summary

Base
- E2 tends to proceed with strong bases – often means **negatively charged** bases such as MeO⁻, R₂N⁻ NC⁻, H⁻ and others
- E1 can proceed with a variety of bases including both negatively charged and neutral compounds. Also can occur in acid. Stronger bases tend to favour an E2 mechanism

Leaving Group
- This is not the most important factor as both E2 and E1 mechanisms are favoured by the presence of a good leaving group such as I⁻, Br⁻, -OSO₂R and others.

- In summary, E1 and E2 mechanism are slightly trickier to distinguish. The biggest indicators are choice of base and solvent

<table>
<thead>
<tr>
<th>Factor</th>
<th>Favours E2 Mechanism</th>
<th>Favours E1 Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Tertiary, benzylic, allylic, α-heteroatom</td>
<td></td>
</tr>
<tr>
<td>Base</td>
<td>Strong and moderate bases</td>
<td>Usually weak bases and acids</td>
</tr>
<tr>
<td>Leaving group</td>
<td>Good leaving group</td>
<td></td>
</tr>
<tr>
<td>Solvent</td>
<td>Wide variety of solvents</td>
<td>Polar protic</td>
</tr>
</tbody>
</table>

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 17 pp. 382-406.
Key learning objectives:

• Know the difference between the possible mechanisms for elimination – E2, E1 and E1\textsubscript{cb}

• The rate law for an E1 reaction

• The curly arrow pushing mechanism, molecular orbital analysis, intermediate and stereo-chemical outcome of an E1 reaction

• The free energy diagram for an E1 reaction

• Regio- and stereoselectivity of E1 reaction

• The factors that favour an E1 mechanism including the nature of the substrate, base, solvent and leaving group

• Substrates that undergo the E1\textsubscript{cb} mechanism

• \textbf{Synthetic Analysis} – How to favour one elimination mechanism over the other?

For further information see Learning Central: CH4103/Learning Materials/LCM
To reinforce your understanding of the contents of this lecture, please refer to:

- Practice questions provided on next slide.
- Online practice questions http://www.oxfordtextbooks.co.uk/orc/clayden2e/
 Username: clayden2e Password: compound
- Online practice questions http://www.chem.ox.ac.uk/vrchemistry/iom/#
- CH4103 Online Test 7
For further practice, attempt the following questions in your own time:

• Q1) What would you expect to be the major product formed from the elimination reaction below? Draw an arrow pushing mechanism

\[
\begin{align*}
\text{Me} & \quad \text{OH} \\
i-\text{Pr} & \quad i-\text{Pr} \\
\end{align*}
\]

\[\text{H}_2\text{SO}_4 \quad \Delta\]

• Q2) Write down all possible products for the following E1 reactions. Which would be the major products in each case?

\[\begin{align*}
\text{Me} & \quad \text{Me} \\
\text{Et} & \quad \text{Br} \\
\end{align*}\]

\[\text{MeOH} \]

\[\begin{align*}
\text{Ph} & \quad \text{Ph} \\
\text{Et} & \quad \text{Br} \\
\end{align*}\]

\[\text{MeOH} \]

• Q3) Why will the following compound not undergo an E1 reaction?

\[\begin{align*}
\text{HO} \\
\end{align*}\]

\[\text{H}_2\text{SO}_4 \quad \Delta\]
Dr Louis C. Morrill
School of Chemistry, Cardiff University
Main Building, Rm 1.47B
MorrillLC@cardiff.ac.uk

Autumn Semester
Lecture 8 Preparation

To best prepare yourself for the contents of this lecture, please refresh

- Reaction thermodynamics (Unit 2, Lecture 1)
- Reaction kinetics (Unit 2, Lecture 2)
- Curly arrow pushing mechanisms (Unit 2, Lecture 3)
- The S_{N2} reaction (Unit 2, Lecture 4)
- The S_{N1} reaction (Unit 2, Lecture 5)
- The E2 reaction (Unit 2, Lecture 6)
- The E1 reaction (Unit 2, Lecture 7)
Key learning objectives:

• In this final lecture, we will bring everything together!

• Be able to take into account various factors including substrate, nucleophile/base, leaving group and solvent to predict which of the type of substitution or elimination mechanism will dominate under a given set of conditions

• Appreciate that in some situations a mixture of 2 or more mechanisms may be in operation, resulting in the formation of multiple products
Substitution vs Elimination

- Substitution and elimination reactions are almost always in competition with each other.

- In order to predict the products of a reaction, it is necessary to determine which mechanisms are likely to occur.

- Don’t assume that there must always be one clear winner. In some cases there is, but often there are multiple products arising from multiple mechanisms.

- The goal is to predict all of the products and to predict which will be major and which will be minor.

- To accomplish this goal, for a given reaction we must:
 1) Classify the substrate as methyl, 1°, 2°, 3°, allylic, benzylic, α-heteroatom or β-LG-carbonyl.
 2) Classify the reagent as one of the following: a) strong nucleophile only; b) strong base only; c) strong nucleophile and strong base; d) weak nucleophile and weak base.
 3) Consider any solvent and temperature effects.
 4) Consider any relevant regiochemical and stereochemical requirements.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Lecture 8: Substitution vs Elimination

Substitution vs Elimination - Substrate

- An important factor in predicting the mechanism is the substrate

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Me—X</th>
<th>R—X</th>
<th>R—H</th>
<th>X—R</th>
<th>X—H</th>
<th>X—Ar</th>
<th>X—RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allylic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzylic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-alkoxy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-LG-carbonyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\text{S}_N1 \text{ Mechanism} \]

\[\text{S}_N2 \text{ Mechanism} \]

\[\text{E1 Mechanism} \]

\[\text{E2 Mechanism} \]

\[\text{E1}_{cb} \text{ Mechanism} \]

\[= \text{excellent} \quad \text{□□} = \text{good} \quad \text{□□□} = \text{moderate} \quad \text{□□□□} = \text{bad} \]

- This table gives an indication of how complex the situation can be. However, we can make some general observations…

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
After we know what is possible for a substrate, we now inspect the reagent to see what will happen. We can divide reagents into categories:

- **strong nucleophile only**
- **strong base only**
- **strong nucleophile / strong base**
- **weak nucleophile / weak base**

Assigning the reagent (nucleophile/base) to one of the above categories gives us more information about the mechanism.
When the reagent functions exclusively as a strong nucleophile (and not as a base):

1) Only substitution reactions can occur, with no elimination
2) The substrate determines which mechanism operates
3) S_N2 predominates for methyl and primary substrates
4) S_N1 predominates for tertiary substrates
5) For secondary, allylic, benzylic and α-heteroatom substrates, both S_N1 and S_N2 can occur, although S_N2 is generally favoured (especially with polar aprotic solvents)

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Substitution vs Elimination – Reagent

When the reagent functions exclusively as a strong base (and not as a nucleophile):

1) Only elimination reactions can occur, with no substitution
2) Such reagents are generally strong bases, resulting in an E2 process
3) This mechanism is not largely sensitive to steric hindrance and can occur for all the substrate classes discussed in this course except methyl
4) E1 reactions are strictly possible with these substrates but with strong bases, the E2 mechanism is favoured

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
When the reagent is both a strong nucleophile and a strong base:

1) Bimolecular reactions are favoured (S_N2 and $E2$)

2) For primary substrates, S_N2 predominates over $E2$ unless a bulky reagent is used (e.g. t-BuOK) in which case $E2$ predominates.

3) For secondary, allylic, benzylic and α-heteroatom substrates, $E2$ predominates as it is less sensitive to steric congestion than the corresponding S_N2.

4) For tertiary substrates, $E2$ predominates due to the same steric argument.
Substitution vs Elimination – Reagent

- When the reagent is both a weak nucleophile and a weak base:
 1) For primary substrates these reactions are not practical as they are too slow.
 2) For secondary substrates in general, these reactions are not practical as they are too slow and too many products can be formed. However, a secondary alcohol can undergo E1 reaction when treated with strong acid and heat.
 3) For tertiary, allylic, benzylic and α-heteroatom substrates substrates, unimolecular reactions are favoured (S_{N1} and E1). High temperature favours E1.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Substitution vs Elimination – Other Indicators

- **Polar aprotic solvents** favour the S_N2 mechanism whereas **polar protic solvents** favour unimolecular mechanisms (S_N1 and $E1$) for all substrates.

- An **increase in reaction temperature** favours elimination mechanisms ($E1$ and $E2$).

- Remember that a S_N2 reaction proceeds with **inversion of stereochemistry** whereas a S_N1 reaction proceeds **loss of stereochemistry (racemisation)**.

- Remember that a $E2$ reaction is **stereospecific** – the stereoisomer of the product formed is dependent upon the stereoisomer of the starting material – whereas a $E1$ reaction is not.

- The **rate equations** for each mechanism can also provide valuable insight if kinetic data is provided. The rate of biomolecular reactions (S_N2 and $E2$) are dependent upon the concentration of both substrate and nucleophile/base whereas the rate of unimolecular reactions (S_N1 and $E1$) are only dependent upon substrate concentration.

- Time to put it all together!

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Substitution vs Elimination – Predicting Mechanism

- The flow chart below puts everything together and simplifies the decision making process. Don’t forget $E_{1 cb}$ for substrates containing a leaving group β to a carbonyl.

- It is time to put everything into practice by working through several examples.

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Worked Example 1 – Substitution vs Elimination

- Predict the major product(s) of the following reaction. You must always be able to rationalise any regio- and/or stereoselectivity and draw curly arrow mechanisms.

\[
\begin{align*}
\text{Me} & \quad \text{OTs} \\
\text{Me} & \quad \text{NaCl} \\
\text{DMSO} & \quad ?
\end{align*}
\]

- The reaction shown has the following characteristics:
 1. Substrate = secondary tosylate (treat tosylates/mesylates the same as halides)
 2. Reagent = Cl\(^-\) which is a non-bulky strong nucleophile and a poor base
 3. Solvent = DMSO which is a polar aprotic solvent

- Major pathway = \(S_{N2}\) – substrate favours \(S_{N2}\) and E2, reagent and solvent favour \(S_{N2}\). Remember that this proceeds with inversion of stereochemistry.

\[
\begin{align*}
\text{Me} & \quad \text{OTs} \\
\text{Me} & \quad \text{NaCl} \\
\text{DMSO} & \quad \text{Cl} \\
\text{Me} & \quad \text{NaOTs}
\end{align*}
\]

For further reading refer to Organic Chemistry 2\(^{nd}\) Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Worked Example 2 – Substitution vs Elimination

• Predict the major product(s) of the following reaction. You must always be able to rationalise any regio- and/or stereoselectivity and draw curly arrow mechanisms.

\[\text{Me} \quad \text{Me} \quad \text{I} \quad \text{Me} \quad \text{Me} \quad \overset{\text{NaOH}}{\rightarrow} \quad ? \quad \text{Me} \quad \text{Me} \quad \text{Me} \]

• The reaction shown has the following characteristics:
 1) Substrate = tertiary iodide
 2) Reagent = HO\(^-\) which is a non-bulky strong nucleophile and a strong base
 3) Solvent = H\(_2\)O which is a polar protic solvent

• Major pathway = E2 – substrate favours S\(_\text{N}1\), E1 or E2, reagent favours E2, solvent not important here. The trisubstituted alkene is the favoured product – Zaitsev’s rule.

For further reading refer to Organic Chemistry 2\(^{nd}\) Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Worked Example 3 – Substitution vs Elimination

- Predict the major product(s) of the following reaction. You must always be able to rationalise any regio- and/or stereoselectivity and draw curly arrow mechanisms.

- The reaction shown has the following characteristics:

 1) Substrate = tertiary bromide
 2) Reagent = \(t\)-BuOK which is a bulky strong base and a poor nucleophile
 3) Solvent = \(t\)-BuOH which is a polar protic solvent

 - Major pathway = **E2** – substrate favours \(S_N\)1, E1 or E2, reagent favours E2, solvent not important here. The disubstituted alkene is the favoured product – bulky base.

For further reading refer to *Organic Chemistry 2nd Ed.* (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Worked Example 4 – Substitution vs Elimination

- Predict the major product(s) of the following reaction. You must always be able to rationalise any regio- and/or stereoselectivity and draw curly arrow mechanisms.

- The reaction shown has the following characteristics:
 1) Substrate = tertiary iodide
 2) Reagent = t-BuOH which is a bulky weak nucleophile and a poor base
 3) Solvent = t-BuOH which is a polar protic solvent
 4) Temperature = high

- Major pathway = E1 – substrate favours SN1, E1 or E2, solvent favour SN1 or E1, reagent and high temperature favours elimination, so E1.

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Worked Example 5 – Substitution vs Elimination

• Predict the major product(s) of the following reaction. You must always be able to rationalise any regio- and/or stereoselectivity and draw curly arrow mechanisms.

\[
\begin{align*}
\text{Me} & \quad \text{I} \\
& \quad \text{H}_2\text{O} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

• The reaction shown has the following characteristics:

1) Substrate = benzyl iodide
2) Reagent = H\textsubscript{2}O which is a non-bulky weak nucleophile and a poor base
3) Solvent = H\textsubscript{2}O which is a polar protic solvent

• Major pathway = S\textsubscript{N}1 – substrate favours S\textsubscript{N}1, E1 or E2, solvent favours S\textsubscript{N}1 or E1, reagent and no heat favours substitution, so S\textsubscript{N}1.

\[
\begin{align*}
\text{Me} & \quad \text{I} \\
& \quad \text{Me} \\
\text{Me} & \quad \text{H}_2\text{O} \\
\end{align*}
\]

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Worked Example 6 – Substitution vs Elimination

- Predict the major product(s) of the following reaction. You must always be able to rationalise any regio- and/or stereoselectivity and draw curly arrow mechanisms.

\[
\begin{align*}
\text{Br} & \quad \text{NaOMe} & \quad ? \\
\text{Me} & \quad \text{Acetone}
\end{align*}
\]

- The reaction shown has the following characteristics:
 - 1) Substrate = secondary bromide
 - 2) Reagent = NaOMe which is a non-bulky strong nucleophile and a strong base
 - 3) Solvent = acetone which is a polar aprotic solvent

- Major pathway = E2 – substrate, solvent and reagent all favour S_N2 and E2, in such situations E2 is favoured due to increased steric congestion with 2° substrates, so E2

\[
\begin{align*}
\text{Br} & \quad \text{NaOMe} & \quad \text{Acetone} & \quad \text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me} & \quad + & \quad \text{OMe} & \quad + \quad \text{NaBr}
\end{align*}
\]

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Worked Example 7 – Substitution vs Elimination

- Predict the major product(s) of the following reaction. You must always be able to rationalise any regio- and/or stereoselectivity and draw curly arrow mechanisms.

- The reaction shown has the following characteristics:
 - 1) Substrate = primary bromide
 - 2) Reagent = NaOMe which is a non-bulky strong nucleophile and a strong base
 - 3) Solvent = acetone which is a polar aprotic solvent

- Major pathway = S_{N2} – substrate, solvent and reagent all favour S_{N2} and E2, in such situations S_{N2} is favoured due to reduced steric congestion with 1° substrates, so S_{N2}

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Substitution vs Elimination – Predicting Mechanism

- The flow chart below puts everything together and simplifies the decision making process. Don’t forget E_{1cb} for substrates containing a leaving group β to a carbonyl.

- You will NOT get this flow chart in exams, so you must learn the reactivity patterns!

For further reading refer to Organic Chemistry 2nd Ed. (J. Clayden et al.) Chapter 15 pp. 328-359 and Chapter 17 pp. 382-406.
Key learning objectives:

• In this final lecture, we will bring everything together!

• Be able to take into account various factors including substrate, nucleophile/base, leaving group and solvent to predict which of the type of substitution or elimination mechanism will dominate under a given set of conditions

• Appreciate that in some situations a mixture of 2 or more mechanisms may be in operation, resulting in the formation of multiple products
To reinforce your understanding of the contents of this lecture, please refer to:

- Worked examples provided in this lecture.
- Online practice questions http://www.oxfordtextbooks.co.uk/orc/clayden2e/ Username: clayden2e Password: compound
- Online practice questions http://www.chem.ox.ac.uk/vrchemistry/iom/#
- CH4103 Online Test 8
There are lots of opportunities to do organic chemistry placements within industry or during a year abroad

Key info:

• Application deadlines are usually around Sept – Feb (start of 2nd year)
• Require up-to-date CV, covering letter and referees
• Interview practice available with Dr Louis C. Morrill and Dr Duncan L. Browne

For further information see Learning Central: CH4103/Learning Materials/LCM