It’s a year since the LIGO Scientific Collaboration, including the Gravitational Physics group here in Cardiff, announced the very first detection of gravitational waves. I’ve been working with the teams in Cardiff and internationally for a little over a year, and it’s been a rollercoaster.
The announcement day itself was, quite frankly, crazy – but a good kind of crazy (radio interviews, live TV interviews on the roof, videos, podcasts, press conferences etc.). Since then I’ve given a number of interviews, public talks and school workshops about the detection and it’s all still as amazing as it was a year ago.
A lot of that is because the numbers are so earth-shattering, for example:
36 septillion yottawatts blasted out of the black hole collision that #LIGO detected last year. https://t.co/4KGjlLvPxw pic.twitter.com/3qWspE5pnl
— Science News (@ScienceNews) February 11, 2017
It says something that to express the power you need not one but two non-standard expressions of magnitude (septillion and yotta) – though since “yotta” and septillion both mean 1024, I can’t help thinking that it might sounds better as a “yotta-yotta-Watt”!
I also took this opportunity to update the Gravitational Wave Catalogue I made a while ago (fullscreen version here). You can change the axes on the graph, and show more information about the detections.
As for the future, LIGO is currently in Observing Run 2 (“O2” for short). Nothing much to say at the moment, but an official announcement by the LIGO Scientific Collaboration on 28th January read:
The second Advanced LIGO run began on November 30, 2016 and is currently in progress. As of January 23 approximately 12 days of Hanford-Livingston coincident science data have been collected, with a scheduled break between December 22, 2016 and January 4, 2017. Average reach of the LIGO network for binary merger events have been around 70 Mpc for 1.4+1.4 Msun, 300 Mpc for 10+10 Msun and 700 Mpc for 30+30 Msun mergers, with relative variations in time of the order of 10%.
So far, 2 event candidates, identified by online analysis using a loose false-alarm-rate threshold of one per month, have been identified and shared with astronomers who have signed memoranda of understanding with LIGO and Virgo for observational followup. A thorough investigation of the data and offline analysis are in progress; results will be shared when available.
The “reach” of the LIGO is defined by its sensitivity – because more distant events are fainter and so harder to detect (meaning that a more sensitive detector network can detect more distant events. The reason for giving three distances for different mass pairings is because more massive binaries produce stronger signals so can be “seen” further away – historically the range of gravitational wave detectors has been stated as the 1.4+1.4 Msun mergers (i.e. two neutron stars).
In terms of scale a Mpc is a “megaparsec” (one million parsecs), which is about 3.26 million light years. The Andromeda Galaxy (our nearest large neighbour) is about 2.5 million light years (0.75 Mpc) away. The Virgo cluster of galaxies, the closest large galaxy cluster, is about 50 million light years (15 Mpc) away, so well within range of LIGO. Though do remember that the previous detections were much further away than that – at around 1 billion light years.